A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle

نویسندگان

چکیده

In this paper we study the first Steklov-Laplacian eigenvalue with an internal fixed spherical obstacle. We prove that shell locally maximizes among nearly sets when both ball and volume are fixed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Steklov Problem Involving the p(x)-Laplacian Operator

By using variational methods and critical point theory for smooth functionals defined on a reflexive Banach space, we establish the existence of infinitely many weak solutions for a Steklov problem involving the p(x)-Laplacian depending on two parameters. We also give some corollaries and applicable examples to illustrate the obtained result../files/site1/files/42/4Abstract.pdf

متن کامل

A two-grid discretization scheme for the Steklov eigenvalue problem

In the paper, a two-grid discretization scheme is discussed for the Steklov eigenvalue problem. With the scheme, the solution of the Steklov eigenvalue problem on a fine grid is reduced to the solution of the Steklov eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. Using spectral approximation theory, it is shown theoretically that the tw...

متن کامل

A Posteriori Error Estimates for the Steklov Eigenvalue Problem

In this paper we introduce and analyze an a posteriori error estimator for the linear finite element approximations of the Steklov eigenvalue problem. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. Finally, we prove that the vo...

متن کامل

On the First Eigenvalue of a Fourth Order Steklov Problem

We prove some results about the first Steklov eigenvalue d1 of the biharmonic operator in bounded domains. Firstly, we show that Fichera’s principle of duality [9] may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d1 for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problem...

متن کامل

The ∞−Laplacian first eigenvalue problem

We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In section 5 we make some remarks on the simplicity of the first eigenvalue of ∆∞: this will be the object of a join...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Analysis

سال: 2021

ISSN: ['1534-0392', '1553-5258']

DOI: https://doi.org/10.3934/cpaa.2020261